The Hopf algebra of Fliess operators and its dual pre-Lie algebra

نویسنده

  • Loïc Foissy
چکیده

We study the Hopf algebra H of Fliess operators coming from Control Theory in the one-dimensional case. We prove that it admits a graded, finte-dimensional, connected gradation. Dually, the vector space R〈x0, x1〉 is both a pre-Lie algebra for the pre-Lie product dual of the coproduct of H, and an associative, commutative algebra for the shuffle product. These two structures admit a compatibility which makes R〈x0, x1〉 a Com-pre-Lie algebra. We give a presentation of this object as a Com-pre-Lie algebra and as a pre-Lie algebra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SISO Output Affine Feedback Transformation Group and Its Faà di Bruno Hopf Algebra

The general goal of this paper is to identify a transformation group that can be used to describe a class of feedback interconnections involving subsystems which are modeled solely in terms of Chen–Fliess functional expansions or Fliess operators and are independent of the existence of any state space models. This interconnection, called an output affine feedback connection, is distinguished fr...

متن کامل

Invariant elements in the dual Steenrod algebra

‎In this paper‎, ‎we investigate the invariant elements of the dual mod $p$ Steenrod subalgebra ${mathcal{A}_p}^*$ under the conjugation map $chi$ and give bounds on the dimensions of $(chi-1)({mathcal{A}_p}^*)_d$‎, ‎where $({mathcal{A}_p}^*)_d$ is the dimension of ${mathcal{A}_p}^*$ in degree $d$‎.

متن کامل

A Faà di Bruno Hopf algebra for a group of Fliess operators with applications to feedback

A Faà di Bruno type Hopf algebra is developed for a group of integral operators known as Fliess operators, where operator composition is the group product. The result is applied to analytic nonlinear feedback systems to produce an explicit formula for the feedback product, that is, the generating series for the Fliess operator representation of the closed-loop system written in terms of the gen...

متن کامل

Differential Geometry of the Lie algebra of the quantum plane

We present a differential calculus on the extension of the quantum plane obtained considering that the (bosonic) generator x is invertible and furthermore working polynomials in ln x instead of polynomials in x. We call quantum Lie algebra to this extension and we obtain its Hopf algebra structure and its dual Hopf algebra.

متن کامل

A note on the new basis in the mod 2 Steenrod algebra

‎The Mod $2$ Steenrod algebra is a Hopf algebra that consists of the primary cohomology operations‎, ‎denoted by $Sq^n$‎, ‎between the cohomology groups with $mathbb{Z}_2$ coefficients of any topological space‎. ‎Regarding to its vector space structure over $mathbb{Z}_2$‎, ‎it has many base systems and some of the base systems can also be restricted to its sub algebras‎. ‎On the contrary‎, ‎in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013